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σ-ω model and compressible bag model?
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Abstract. Compressible bag model is formulated on the basis of lagrangian field theory. A specific ap-
plication is done in conjunction with σ-ω model. The results are similar to Chin-Walecka model and
almost reproduce our previous results. The effective nucleon mass does not become so small owing to the
compressibility, in contrast to Chin-Walecka model.

1 Introduction

Recently, physics of quark matter and hadronic matter at
finite density and/or finite temperature is of interest and
is planned to investigate experimentally in higher energy
density region by RHIC and LHC. On the theoretical side,
equation of state for hadronic matter at finite density and
finite temperature is necessary to study such physics as
deconfinement transition, ultrarelativitic heavy-ion colli-
sions, neutron star and early universe. For high density
hadronic matter, the effect of relativity and the effect of
size of hadron become important. As for relativistic ef-
fect, the fermi momentum of nucleon is already 250 MeV
at normal density, comparable to the mass of nucleon in
nuclear/neutron matter. Chin and Walecka [1–3] formu-
lated fully relativistically σ-ω model, hereafter we refer
it as CW-model, and succeeded to explain gross feature
of nuclear physics at normal density. As for size effect,
nucleon charge radius is about 1 fm and nuclear matter
cannot exist in the high density region above the baryon
number density of the inverse of the bag if nucleon has
fixed size and cannot overlap.

In the previous paper [4], we proposed a compressible
bag model that presents a consistent equation of state for
hadrons applicable at any density. In the compressible bag
model, a bag in many body system feels the microscopic
thermal pressure from the other bags and is compressed to
minimize the total free energy of the system. Owing to the
compressibility, hadronic matter can exist at higher den-
sity than inverse volume. We have applied the compress-
ible bag model to several problems to obtain satisfactory
results [5–7]. The key object to formulate compressible bag
model is the bag volume dependent free energy F̃ . Once
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the form of F̃ is given one can develop thermodynam-
ics of many body system of bags. In the previous paper,
we adopted a phenomenological form of relativistic fermi
gas with particle exchange type interactions and applied
to nuclear physics at normal density and astrophysics at
high density.

The purpose of the present paper is to derive F̃ on the
basis of the lagrangian field theory and to obtain the equa-
tion of state using the derived F̃ . The specific application
is done in conjunction with σ-ω model. The results almost
reproduce those of the previous paper. The results are also
similar to CW-model. However, the stiffness of equation
of state is different. In the compressible bag model, the
repulsive force due to the volume exclusion effect can sus-
tain the attraction by σ exchange interaction, so that it
can take the place of ω exchange repulsive force. Then
the asymptotic behavior of the energy per nucleon in the
compressible bag model is proportional to ρ1/3 (ρ is the
density) while that is proportional in CW-model to ρ. A
remarkable difference lies in the behavior of the effective
mass of nucleon [8,9]. In CW-model, the nucleon mass de-
creases continuously with density and shows rather small
effective mass even in the normal density region. In the
compressible bag model, the nucleon mass becomes larger
as nucleon bag shrinks when the density becomes higher.
Then the effective mass of nucleon turn to increase and
the model reproduces a usual value for the effective mass
of nucleon.

In Sect. 2, the formulation is presented and the results
of its application is given in Sect. 3. The final section is
devoted to discussion.

2 The formulation

Let us start with general formalism. Suppose field operator
be φi and its mass parameter be Mi for the i-th kind
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particle and coupling constant be GI at the I-th kind of
interaction. We assume all the interactions to be local.
The lagrangian density is given by

L = L(φi, ∂µφi;Mi, GI). (1)

In order to get free energy, it is necessary to introduce
number operator N̂i and to add source term to lagrangian∫

d3xL(φi, ∂µφi;Mi, GI) +
∑

i

µiN̂i, (2)

where µi is the chemical potential to N̂i. The number
operators are defined as sums of products of a creation
operator and an annihilation operator, taking interaction
picture. Standard finite temperature field theory [10] tells
us a thermodynamical potential;

eβpV =
∫

[Dφi] exp

[∫ β

0
dτ

{∫
d3xL(φi, ∂µφi;Mi, GI)

+
∑

i

µiN̂i

}]
, (3)

where p is the pressure, V the volume and β the inverse
temperature. The pressure is given by

p = p(µi, T,Mi, GI). (4)

The free energy is given by the Legendre transformation,

F (Ni, V, T,Mi, GI) =
∑

i

µiNi − pV, (5)

with

Ni = V
∂p

∂µi
. (6)

In order to translate the free energy (5) to the one for
the compressible bag model, we consider the free energy
that is a sum of a free part and an interaction part,

F =
∑

i Ff (Ni, V, T,Mi) + Fint(Ni, V, T,Mi, GI). (7)

In the compressible bag model, the bag feels microscopic
thermal pressure by other bags. This effect is taken into
account by the replacement

V → V ′ = V − b
∑

iNivi, (8)

in the free part of F , where b is volume exclusion efficiency
parameter and vi is the bag volume. A few comments are
in order. The first comment is about the reason why we
have added the source terms for number operators of all
fields in (2). The reason is that it is necessary for the re-
placement (8) to keep all number variables in the free en-
ergy as independent variables. At the end of calculation,
the chemical potential corresponding to non-conserving
number should be set to zero. The second comment is
that all the hadron are treated on equal footing. That

is, not only nucleon but also all other hadrons including
mesons are treated on the basis of bag model so that all
the hadrons contribute to volume exclusion (8). The last
comment is that the replacement (8) should not be done
in the interaction part. The reason is as follows. Since we
have assumed all the interactions in the lagrangian (1) to
be local, interactions take place at a spacetime point in the
level of elementary hadron interactions coded by the la-
grangian. When the elementary hadrons are replaced with
bags, it arises a picture that bags should meet and overlap
in order to interact one another. If the bag model will be
derived from QCD, the bag interactions will take place by
exchanging gluons inside the overlapped bag. Therefore
the volume exclusion does not take place in interactions
originating from the lagrangian (1). Even if the free energy
cannot be separated as a sum of a free part and an interac-
tion part, the interaction terms may be distinguished from
other terms by the appearance of coupling constants. Then
the free energy for the compressible bag model is obtained
by the replacement (8) in the terms other than interaction
terms.

The hadron mass should be replaced with that of a
bag model,

Mi = Mi(vi). (9)

The coupling constant should be replaced with a vertex
function. Its most general form is given by

GI = GI(vi, Ni/V, T ). (10)

In the below, we will adopt MIT form for Mi(vi) for
the purpose of specific application. As for the vertex func-
tion, we will assume it to be a constant for simplicity. The
free energy with replacements of (8), (9) and (10) is the
starting point of the compressible bag model. To remind
the fact that the replacement (8) should not be done in the
terms containing coupling constants, we attach a prime to
the free energy function (5),

F̃ = F ′(Ni, V
′, T,Mi(vi), GI(vi, Ni/V, T )). (11)

Minimization conditions with respect to bag volume and
the conditions that the chemical potentials µn correspond-
ing to non-conserving number Nn should vanish,

∂F̃

∂vi
= 0, µn =

∂F̃

∂Nn
= 0, (12)

determine vi and Nn as functions of T , V and conserving
numbers such as baryon number. The substitution of the
solutions into the free energy function (11) yields the final
free energy. Then we can develop thermodynamics of the
system.

Now we apply the compressible bag model in conjunc-
tion with σ-ω model. The lagrangian for σ-ω model is
defined by

L =
∫
d3x

{
ψ̄[γµ(i∂µ −Gωωµ) +Gσσ −M ]ψ (13)

+
1
2
∂µσ∂

µσ − 1
2
M2

σσ
2 − 1

4
FµνF

µν +
1
2
M2

ωωµω
µ

}
,
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where Fµν = ∂µων − ∂νωµ is the field strength for ω field.
To get free energy, we add source terms

L → L+ µT N̂T + µBN̂B + µσN̂σ + µωN̂ω, (14)

where N̂T , N̂B N̂σ and N̂ω represent operators for total nu-
cleon number, baryon number, omega number and sigma
number, respectively. Taking interaction picture, we define
the number operators as sums of products of a creation
operator and an annihilation operator. Explicit forms of
definitions are as follows:

N̂T =
∫

d3k
(2π)3

M

k0

∑
s

[
b†(k, s)b(k, s) + d†(k, s)d(k, s)

]
(15)

N̂B =
∫

d3k
(2π)3

M

k0

∑
s

[
b†(k, s)b(k, s) − d†(k, s)d(k, s)

]
(16)

b(k, s) =
∫
d3xu†(k, s)eikxψ(x),

d(k, s) =
∫
d3xψ†(x)v(k, s)eikx,

b†(k, s) =
∫
d3xψ†(x)u(k, s)e−ikx,

d†(k, s) =
∫
d3x v†(k, s)e−ikxψ(x) (17)

N̂σ =
∫

d3k
(2π)32k0 a

†(k)a(k) (18)

a(k) = i

∫
d3x eikx↔

∂0σ(x),

a†(k) = −i
∫
d3x e−ikx↔

∂0σ(x) (19)

N̂ω =
∫

d3k
(2π)32k0

∑
s

c†(k, s)c(k, s) (20)

c(k, s) = −i
∫
d3x εµ(k, s)eikx↔

∂0ωµ(x),

c†(k, s) = i

∫
d3x εµ(k, s)e−ikx↔

∂0ωµ(x) (21)

εµ(k, s)εµ(k, s′) = −δss′ ,∑
s

εµ(k, s)εν(k, s) = −gµν +
kµkν

M2
ω

. (22)

In the above k0 =
√

k2 +m2 and b† (d†) and b (d) are cre-
ation operator and annihilation operator for nucleon (anti-
nucleon) and a† and a are creation operator and annihila-
tion operator for σ-particle and c† and c are creation op-
erator and annihilation operator for ω-partile. Their nor-
malization conventions and other notations are the same

as those in the textbook of Itzykson and Zuber [11]. Since
N̂T , N̂σ and N̂ω are not conserved quantity (in Heisenberg
picture), we set corresponding chemical potentials to zero
at the end of calculation.

Under mean field approximation for σ and ω, transla-
tional invariance and rotational invariance require that

〈σ(x)〉 = σ = const., 〈ω0(x)〉 = ω0 = const.,
〈ωi(x)〉 = 0. (23)

Using (18)∼(22) and (23), vacuum expectation values of
N̂σ and N̂ω are calculated as follows;

〈N̂σ〉 =
∫

d3k
(2π)32k0

∫
d3x

∫
d3x′eik(x−x′)k2

0σ
2

=
1
2
Mσσ

2 V,

〈N̂ω〉 =
∫

d3k
(2π)32k0

∫
d3x

∫
d3x′

(
−gµν +

kµkν

M2
ω

)

×eik(x−x′)k2
0ω

µων

= −1
2
Mωgijω

iωj V = 0. (24)

It should be noted that time component of ω-field does not
contribute to the vacuum expectation value of its number
operator. Physically, (24) means that σ is condensed in
the zero mode (bose condensation) while ω is not. Owing
to (23) and (24), the fermion part of (14) reduces to the
free lagrangian with the following replacement

µB → µB −Gωω0, M → M∗ = M −Gσσ, (25)

and the statistical sum is trivially performed to give

p = −Ω/V =
1
βV

ln Tr eβL

= pf (µ′
N , T,M

∗) + pf (µ′
N̄ , T,M

∗)

−1
2
M2

σσ
2 +

1
2
Mσσ

2µσ +
1
2
M2

ωω
2
0 , (26)

with

µ′
N = µT + µB −Gωω0,

µ′
N̄ = µT − µB +Gωω0, (27)

where pf denotes the pressure for free fermi gas. We write
down here the function form of pf , as well as its Legendre
transform to free energy Ff for later convenience,

pf (µ, T,m) = gT

∫
d3k

(2π)3
ln
[
1 + e−(E−µ)/T

]
, (28)

E =
√

k2 +m2,

N = V pf,µ(µ, T,m) = gV

∫
d3k

(2π)3
1

e(E−µ)/T + 1
, (29)

Ff (N,V, T,m) = µN − pf (µ, T,m)V, (30)
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where g is a degeneracy factor. Mean field requirements
∂p/∂σ = ∂p/∂ω0 = 0 are written as

∂p/∂σ = −(M2
σ −Mσµσ)σ +GσρS = 0, (31)

∂p/∂ω0 = M2
ωω0 −GωρB = 0, (32)

with

ρS = g

∫
d3k

(2π)3
M∗

E

×
[

1
e(E−µ′

N
)/T + 1

+
1

e(E−µ′
N̄

)/T + 1

]
, (33)

ρB =
∂p

∂µB
= pf,µ(µ′

N , T,M
∗) − pf,µ(µ′

N̄ , T,M
∗), (34)

where ρS is nucleon scalar density while ρB baryon num-
ber density. Performing a Legendre transformation of p
with the aid of (31) and (32),

NT = V
∂p

∂µT
= V

[
pf,µ(µ′

N , T,M
∗) + pf,µ(µ′

N̄ , T,M
∗)
]
,

NB = V
∂p

∂µB
= V

[
pf,µ(µ′

N , T,M
∗) − pf,µ(µ′

N̄ , T,M
∗)
]
,

Nσ = V
∂p

∂µσ
= V

1
2
Mσσ

2 = V
G2

σMσρ
2
S

2(M2
σ −Mσµσ)

, (35)

we obtain free energy

F = µTNT + µBNB + µσNσ − pV

= µ′
NNN + µ′

N̄NN̄ +Gωω0NB + µσNσ − pV

= Ff (NN , V, T,M
∗) + Ff (NN̄ , V, T,M

∗)

+MσNσ +
G2

ωN
2
B

2M2
ωV

,

≡ F (NN , NN̄ , Nσ, V, T,M,Mσ, Gσ, Gω), (36)

M∗ = M −Gσ

(
2Nσ

MσV

)1/2

,

NN ≡ 1
2
(NT +NB), NN̄ ≡ 1

2
(NT −NB). (37)

In the above, we have introduced the notation NN (NN̄ )
for nucleon (antinucleon) number.

Following the general consideration mentioned above,
one may obtain v-dependent free energy F̃ from (36) as

F̃ = F ′(NN , NN̄ , Nσ, V
′, T,M(v),Mσ(vσ), Gσ, Gω), (38)

V ′ = V − b(NNv +NN̄v +Nσvσ). (39)

The masses are given by MIT bag model as

M(v) = ANv
−1/3 +Bv, Mσ(vσ) = Aσv

−1/3
σ +Bvσ. (40)

It should be noted that the volumes of ω particles are not
subtracted in (39) as a consequence of the second equation
in (24). Since disappearance of vω in V ′ means that ω-bags
do not feel external microscopic pressure by other hadrons,
Mω is not replaced with that of bag model in (40). (See

also the comment after (46).) The vertex functions are
assumed to be constants for simplicity,

Gσ = gσ, Gω = gω. (41)

In the below, we will confine ourselves to the discussion
for the case of T = 0. Replacing NB with N , the form of
internal energy function Ẽ is given by

Ẽ = Ef (N,V ′,M∗) +Mσ(vσ)Nσ +
g2

ωN
2

2M2
ωV

. (42)

V ′ = V − b(Nv +Nσvσ), (43)

M∗ = M(v) − gσ

(
2Nσ

Mσ(vσ)V

)1/2

, (44)

with

Ef (N,V,m) = Ff (N,V, T = 0,m)

= gV

∫
k≤kF

d3k
(2π)3

(k2 +m2)1/2,

kF = (6π2N/gV )1/3. (45)

Now we may impose the compressible bag model re-
quirements on the internal energy (42) and the condi-
tion that the chemical potential µσ corresponding to non-
conserving σ-number Nσ should vanish

∂Ẽ

∂v
=
∂Ẽ

∂vσ
= 0, µσ =

∂Ẽ

∂Nσ
= 0. (46)

In the above, we have not imposed a minimization condi-
tion with respect to vω since ω particles are absent. If we
imposed it with mass function for ω particle replaced with
that of bag model, we would get result that the volume of
ω particle is the same as that in the vacuum. Therefore
we have set the mass of ω to the value in the vacuum from
the outset. We can obtain the equation of states on the
basis of (42)∼(46).

The dependence of the resulting equation of state on
gσ and b comes in the combination of gσ/Mσ0 and b/B.
This is seen as follows. Changing variables v, vσ and Nσ

to

ṽi =
vi

vi0
, Ñσ = Mσ0Nσ, (47)

and using the relation,

vi0 =
Mi0

4B
, (48)

where subscript 0 denotes values in the vacuum, Ẽ is
rewritten as

Ẽ = Ef (N,V ′,M∗) + (Mσ(vσ)/Mσ0)Ñσ

+
g2

ωN
2

2M2
ωV

, (49)

V ′ = V − b(Nv0ṽ + (Ñσ/Mσ0)vσ0ṽσ)

= V − (b/4B)(NM0ṽ + Ñσ ṽσ), (50)
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Fig. 1. Density dependence of the energy for symmetric nuclear matter and neutron mater are shown in a and b, respectively.
Solid, dotted and dashed lines depicts the results for present, previous and Chin-Walecka models, respectively. In c, density
dependence of the effective mass M∗/M0 is shown. Solid lines shows for the symmetric nuclear matter, dashed for the neutron
matter. The upper group corresponds to present result, and the lower to the Chin-Walecka model

M∗ =
M(v)
M0

M0 − gσ

(
2Ñσ/Mσ0

(Mσ(vσ)/Mσ0)Mσ0V

)1/2

=
M(v)
M0

M0 − gσ

Mσ0

(
2Ñσ

(Mσ(vσ)/Mσ0)V

)1/2

(51)

and Mi(vi)/Mi0 is written as

Mi(vi)
Mi0

=
1
4
(3ṽ−1/3

i + ṽi). (52)

Thus it is clearly seen from (49)∼(52) that b and gσ enter
in Ẽ with the combination of b/B and gσ/Mσ0, respec-
tively.

3 Applications and their results

Now let us apply the equations of states to nuclear physics
at normal density, deconfinement transition and neutron
stars. The total energy of the nucleus of atomic number
Z and mass number A is given by

Ẽ = Ef (Z, V ′,M∗) + Ef (A− Z, V ′,M∗)

+MσNσ +
g2

ωA
2

2M2
ωV

, (53)

M∗ = M − gσ

(
2Nσ

MσV

)1/2

,

V ′ = V − b(Av +Nσvσ) (54)

with

Ef (N,V,m) = gV

∫
k≤kF

d3k
(2π)3

(k2 +m2)1/2

=
gV

24π2

[
3k3

F (k2
F +m2)1/2

+
3
2
m2kF (k2

F +m2)1/2

−3
2
m4 ln

kF + (k2
F +m2)1/2

m

]
,

kF = (6π2N/gV )1/3, g ≡ 2. (55)

The parameters to be determined are those related to
bag model, and those related to nuclear matter properties.
The parameters related to bag model are AN , Aσ and B.
Here Aσ need not to be determined since Mσ0 appear in
the combination of gσ/Mσ0 as mentioned in the bottom of
the last section. The values of AN and B are determined
by using experimental values of nucleon mass M0 and the
proton charge radius R0

M0 = 0.94 GeV, R0 = 0.82 fm, (56)

as

AN = 4.7, B = (0.167 GeV)4. (57)

Two of the remaining parameters, b, gσ/Mσ0, gω/Mω are
determined by the normal nuclear density ρ0 and the bind-
ing energy uV ,

ρ0 = 0.17 fm−3, uV = 15.7 MeV. (58)

The pressure are calculated using p = −EV

p = pf

(Z
A
ρ′,M∗

)
+ pf

(A− Z

A
ρ′,M∗

)
−1

2
ρSgσ

(2ρσ

Mσ

)1/2
+

g2
ω

2M2
ω

ρ2,

ρ = A/V, ρσ = Nσ/V. (59)

The attraction by σ and the repulsion by ω cancels
and balances the nuclear matter in CW-model. In the com-
pressible bag model, the repulsion is coming from not only
ω but also pressure caused by volume exclusion. And, as
by only volume exclusion the normal nuclear matter prop-
erties can be reproduced, we omit here the contribution
of the ω meson by setting gω/Mω = 0 for simplicity.

The results are shown in Fig. 1. In Fig. 1a and b, e
denotes an energy per nucleon. For the density depen-
dence of the energy, the present and previous result are
almost same. In CW-model, energy is increased rapidly
when the density increases compared with our results.
The density dependence of the effective mass is shown
in Fig. 1c. In CW-model, M∗ decreases continuously with
density. While, M∗ shows a rather large value and a min-
imum in the compressible bag model. The decrease of M∗
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Table 1. Results for nuclear physics at normal density, decon-
finement transition and neutron stars. Boldface digits are used
as inputs

previous present CW

b 1.53 1.28 –
gσ/Mσ0[GeV−1] – 9.29 17.0
g2

ω/M2
ω [GeV−2] – 0 222

other parameters aS = 37.4 – –
aV = 8.8

ρ0 [fm−3] 0.17 0.17 0.17
uV [MeV] 15.7 15.7 15.7
uτ [MeV] 23.6 20.9 20.7
K [MeV] 553 538 544

nuclear matter ρH
c /ρ0 10.6 9.0 2.5

ρQ
c /ρ0 11.1 9.5 4.0

neutron matter ρH
c /ρ0 3.2 3.3 2.1

ρQ
c /ρ0 4.0 4.1 3.5

Radius[km] of 1.44 M� 12.9 12.8 12.9
Maximum mass /M� 2.1 2.1 2.2

Radius[km] of quark core 1.4 1.2 none

comes from the attraction by the σ field in both cases.
However, as the nucleon mass is determined by the pres-
sure balance in the compressible bag model, M∗ increases
in high density where pressure is high.

The other results are summarized in the Table 1, where
uτ is the symmetric energy and K is the compressibil-
ity defined by K = 9dp/dρ whose experimental value is
210± 10 MeV [12]. The mass of neutron star is calculated
using TOV equation [13]. As seen from the table, the re-
sults are very similar to the previous results. Except for
critical densities for the deconfinement transition and the
quark core radius of the maximum mass neutron stars,
three columns are similar to one another. The differences
between the former two and the CW-model originate from
the existence of ω exchange potential which has stronger
asymptotic behavior than the volume exclusion effect.

4 Discussions

We have shown general formulation of relativistic many
body theory in which particles have finite volume, and
have applied the formulation to σ-ω model with T = 0.
Both CW-model and compressible bag model give very
similar results for nuclear matter property and neutron
star properties. However, the value of M∗ and asymp-
totic density dependence of energy show large difference.
These differences are reflection of the difference of the re-
pulsion in the models. In compressible bag model the re-
pulsive contribution to the energy are ω exchange and the
volume exclusion effect. While in CW-model, only ω ex-
change plays a role of repulsion.

We discuss here treatments of the meson field in the
compressible bag model. The first one is for the σ meson,

e-M0 [MeV]

ρ/ρ0

ρvb

ρ/ρ0

0

20
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0
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Fig. 2. Density dependence of the nucleon volume, and the
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σ exclude volume, dashed result in which only the nucleon
exclude volume
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respectively

especially volume exclusion of the σ meson. σ field is a
background field in the mean field approximation. And as
commented, the free energy depends on Mσ0 only in the
combination of gσ/Mσ0. Then it arises a question that the
σ meson is real meson. To see this, nuclear matter proper-
ties are calculated with omitting the σ volume exclusion
in (43), and are shown in Fig. 2. By omitting σ volume ex-
clusion, the value of b changes and takes a little bit larger
value in order to reproduce the nuclear matter property
at ρ0. Net contributions are absorbed into the value of
b, and the difference between the results with σ volume
exclusion and those without exclusion is small and differs
about 10% at most. Therefore, from this result, it is not
possible to choose the right treatment of σ meson.

The second is for the treatment of ω meson. We have
omitted the ω field to show that the volume exclusion
can sustain the attraction without ω exchange repulsion.
It has remarked that the density dependence of the en-
ergy is different between CW-model and the compressible
bag model. The difference between models is coming from
whether the model includes ω field or not. In CW-model
ω exchange contribution increase the energy in high den-
sity. And the energy in high density is dominated by ω
exchange contribution. Therefore asymptotic density de-
pendence of energy is proportional to ρ. While, in the
compressible bag model M∗ increases by the pressure in
high density. As we have omit ω field M∗ is determined
by the pressure balance. Then M∗ shows dependence of
ρ1/3, and the energy shows asymptotic behavior of ρ1/3 in
high density.
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We have simply omitted the ω field as the parame-
ters relating to ω meson are not able to be determined
in the present framework. To see the effect of the ω field
contribution and density dependence of energy, we cal-
culate nuclear matter properties by taking g2

ω/M
2
ω to be

50 GeV−2. Resulting energy and the M∗ in wider density
range are shown in Fig. 3. The compressible bag model
gives minimum ofM∗ even when ω meson couples, and the
value shows a smaller one. For the energy it is clear that
the larger the coupling, the results approaches to those of
CW-model. By only studying a nuclear matter properties,
there is no clear differences except the effective mass be-
tween CW-model and compressible bag model. The crit-
ical point of deconfinement transition and the structure
of the neutron star may be clues as well as nuclear force
approach.

In the application to general formulation to σ-ω model,
vertex functions are assumed to be constant as in (41).
This assumption may be justified under the mean field ap-
proximation since the coupling between nucleon and me-
son takes only zero momentum transfer under the approx-
imation so that the model is free from structure of vertex
functions. This, in turn, means that the model does not
determine Mσ0. However, beyond mean field approxima-
tion in the case of T 6= 0, nucleons are directly coupled
with real meson which is excited thermodynamically. In
that case, Mσ0 or structure of vertex functions is deter-
mined by the equation of states.
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